

Overview of Presentation

- Description of PWWTP
- PWWTP Loading
- PWWTP Performance
- Proposed Effluent Quality
- Optimisation requirements

Pahiatua WWTP – Make Up

- Influent fine screen
- 1.3 ha Facultative Pond (P1)
- 10.5kW mechanical aeration
- 1.4 ha Secondary pond (P2)
- 3kW aeration
- 1.4 ha Maturation Pond (P3)
 also used for balancing storage
- Coagulant dosing
- Lamella clarifier
- Cloth filter
- UV disinfection

PWWTP - Loading

- Less than 2,500 persons
- ADWF = 408 m³/d [180 l/person/day (Good)]
- \cdot ADF = 780 m³/d (approx. 300 l/person/day)
- PWWF = $4,300 \text{ m}^3/\text{d}$
- 230 kg BOD₅ /d
- 39 kg TN/d
- Pond 1: 177 kg BOD₅/ha/d cf 84 kg/ha/day
- P1 + P2: 85 kg BOD₅/ha/d
- P1 processing capacity approx. 260 kg BOD₅/day

PWWTP - 2016 Performance

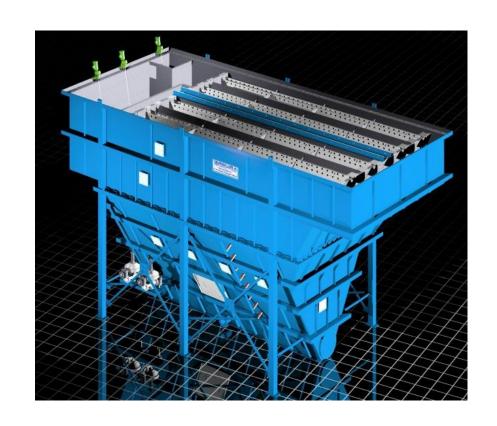
Analyte	2016 Performance		
	Mean	95th %ile	
Flow (m ³ /day)	780		
cBOD ₅ (mg/L)	23	31	
Suspended Solids (mg/L)	41	65	
Ammonia (mg/L)	2.5	6	
Total Nitrogen (mg/l)	9	14	
D.R phosphorus (mg/l)	1.4	2.2	
Microbiological			
E.coli (MPN/100ml)	600	2340	

EWWTP - 2016 Performance

	TN	DRP	cBOD ₅
	kg/d	kg/d	kg/d
Influent	39	7	230
Effluent	7	1.3	18
% Removal	82%	81%	92%

Proposed Effluent Quality

	Following implementat upgrades	ion of proposed
	Median	95th %ile
scBOD ₅ (g/m ³)	≤5	≤8
Total suspended solids (g/m³)	≤15	≤30
Ammoniacal nitrogen (g/m³)	≤10	≤15
DRP (g/m³)	≤0.5	≤1.0
	Median	95 th %ile.
E.coli (MPN/100ml)	260	1,000


Tertiary Lamella Clarifier

- Target: TSS, DRP, Disinfection pre-cursor
- Incidental (Bonus): cBOD₅, organic N, pathogens direct removal
- Currently used:
 - Taihape, Hunterville, Woodville, Pahiatua &
 - In Actiflo configuration: Warkworth, Ngaruawahia,
 Gore

Inclined Plate (Lamella) Clarifier

Increased settling efficiency due to increased surface area

Smaller Area Needed for Installation

Lamella Clarifier

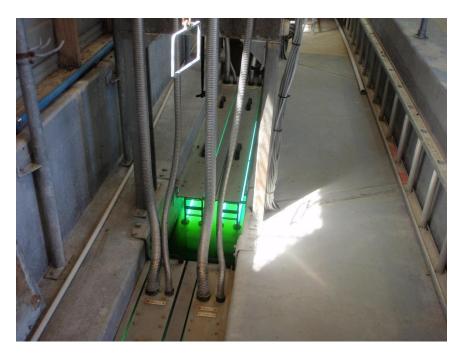
Example Lamella

Lamellas at Gore WW Oxidation ponds

Tertiary Cloth Filter

- Target: TSS mop up what goes through clarifier.
- Incidental (Bonus): cBOD₅, DRP, organic N, pathogens direct removal
- Currently used:
 - Pahiatua, Te Awamutu
 - Similar at Feilding, Whangarei, Whitianga,
 Pauanui, Whangamata

Example Cloth Filter

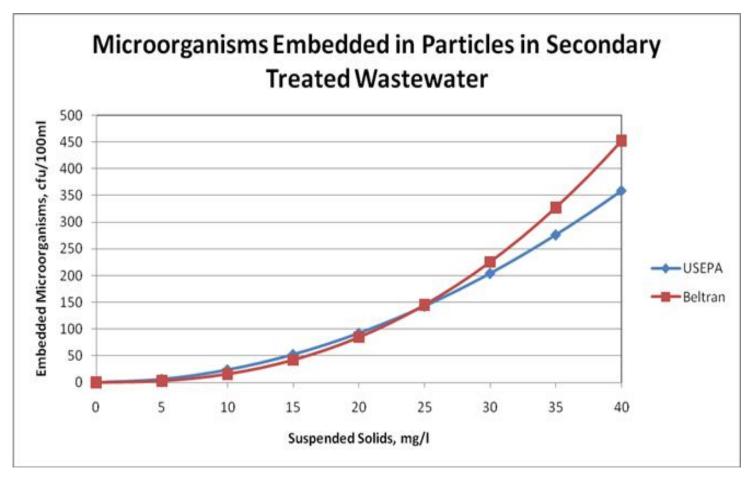

 Cloth Filter at Te Awamutu WWTP

UV Disinfection

- Requires good clarity effluent and low TSS
- Targets Pathogens: Coliform bacteria,
 Viruses, Protozoa
- Dose rates affected by: Flow rate, Clarity,
 Solids
- Currently used: Most NZ WWTPs

UV Reactor Types

Open Channel Reactor - Katikati


In-Pipe Reactor - Meremere

UV Dose Rates

Pathogen	Average UV Dose (mJ/cm²) Required to Inactivate			
	1log	2log	3log	4log
Cryptosporidium parvum	3.0	4.9	6.4	7.9
Giardia lamblia cysts	NA	<5	<10	<10
Giardia muris cysts	1.2	4.7	NA	NA
Vibrio cholerae	0.8	1.4	2.2	2.9
Shigella dysenteriae	0.5	1.2	2.0	3.0
Escherichia coli O157:H7	1.5	2.8	4.1	5.6
Salmonella typhi	1.8-2.7	4.1-4.8	5.5-6.4	7.1-8.2
Shigella sonnei	3.2	4.9	6.5	8.2
Salmonella enteritidis	5	7	9	10
Legionella pneumophila	3.1	5	6.9	9.4
Hepatitis A virus	4.1-5.5	8.2-14	12-22	16-30
Poliovirus Type 1	4-6	8.7-14	14-23	21-30
Coxsackie B5 virus	6.9	14	22	30
Rotavirus SA11	7.1-9.1	15-19	23-26	31-36
NA - Data Not Available				

Target 30 – 40 mJ/cm²

Why Clarification? - UV Shielding

Effect of residual solid particles on ability to disinfect

Required Optimisation

- Hydraulic tests
- Short list coagulants 'Jar' Testing
- Continued trialling
- Optimise flash mixer operation
- Optimise flocculator operation
- Adjust and optimise Feed Box baffles
- Seasonal testing with shortlisted coagulants
- Measure UVT, TSS, E.coli, DRP regularly
- Ensure UV control is optimised and dose is monitored

Example Constructed Aquifers

Te Rapa